点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:快三平台计划_快三平台代理
首页>文化频道>要闻>正文

快三平台计划_快三平台代理

来源:快三平台客户端下载2024-09-14 17:48

  

快三平台计划

BOE(京东方)创新科技赋能体育盛会无限“京”彩******

  第24届冬季奥林匹克运动会在北京举行,2022年2月4日北京冬奥会开幕式恰逢中国二十四节气之首“立春”,开幕式上运用最新科技手段为世界人民带来“中国式浪漫”。从令全球观众赞叹不已的主火炬台、全球最大的8K超高清地面显示系统,再到整个赛事期间随处可见的8K超高清显示大屏、志愿者数字胸牌……据了解,这些“黑科技”均来自BOE(京东方)。

  作为全球领先的物联网创新企业,为本届冬奥会增添“京”彩一笔。音乐光影流转,炽烈的圣火燃烧在北京的夜空,宣告这场全球瞩目的冬季冰雪体育盛会正式开幕,为世界献上一场融合数字科技与美学创新,极富科技感、立体感、动态感、唯美感和体验感的全新视觉盛宴。

BOE(京东方)创新科技赋能体育盛会无限“京”彩

  “软硬融合”创新科技让主火炬台上巨型“雪花”盛放。为实现导演组火炬台要像“钻石般璀璨闪耀”的创意理念。据了解,开幕式的主火炬台直径达14.89米,由96块小雪花形态和6块橄榄枝形态的LED双面屏创意组成,采用双面镂空设计,嵌有55万余颗LED灯珠,每一颗灯珠都由驱动芯片的单一信道独立控制。BOE(京东方)核心研发团队通过500多张设计图纸和近10轮的制样,研发出目前行业内发光面最窄的单像素可控异形显示产品,充分呈现雪花的线条感和细腻的画面显示效果,成功将导演组的艺术创意变为现实。

  火炬点燃后,巨型雪花屏由中心向四周辐射开来,波浪般层层递进璀璨光芒,快速变换、完美同步的显示画面背后,采用的是BOE(京东方)AIoT技术体系及自主研发的同/异步兼容信发系统,异步集控能在极短时间内将大规模视频内容快速下发,同步集控确保102块双面屏幕实现毫秒级响应;此外,“主路+环路”备份的高冗余控制系统确保了火炬台播控系统的超高可靠性。

  同时,通过采用LoRa(远距离无线电)低延迟控制系统搭配同步播放时间校正技术,进一步确保指令下发万无一失,实现视频画面完美协同。整体硬件支撑、软件系统均由BOE(京东方)自主研发设计。伴随圣火点亮,开幕式让全球观众都为其唯美浪漫而惊艳震撼。

  全球最大8K超高清地面显示系统呈现出“会发光的舞台”震撼的视觉艺术。奥运的舞台上,绝不单是赛场上运动员之间的较量,更是赛场背后科学水平、技术装备的大比拼。据了解,目前全球最大的8K超高清地面显示系统应用于开幕式舞台地面,与演员表演实时互动,交相辉映。

  整体舞台面积达10393平方米,采用多个8K+级分辨率的画面融合技术,超大规模的光学校正算法可对每个显示画面进行像素点级的光学校正,可实现100000:1超高对比度、3840Hz超高刷新率,以及29900x15096超高分辨率的超高清绚丽画面。通过搭载BOE(京东方)自主研发的超大规模显示模组控制与同步系统,还可实时捕捉演员行进轨迹,实现画面与演员的无缝互动。同时,在长达5个月的高强度排演及冬季零下30摄氏度的极端低温雨雪天气,地面显示系统依然能实现稳定运行。

  开幕式视效总监、视效总制作团队黑弓Blackbow负责人王志鸥表示,我们历时三年,以“数字科技”为载体,以“传统与创新结合”为立意,围绕主火炬台打造璀璨梦幻的冰雪意境,用视觉艺术向世界讲述新时代的中国文化故事,而这些视觉内容的呈现需要与硬件技术的高度协同和完美配合,正是BOE(京东方)全球领先的显示技术和智慧系统,让开幕式的创意内容达到了最好的呈现效果。

  智慧显示“8K看比赛”,物联网科技“数字胸牌”,使黄金赛事资源焕发活力。作为中央广播电视总台8K超高清技术合作伙伴,BOE(京东方)携手央视,以领先的8K专业级显示助力国际顶级冰雪赛事的首次8K直播,并在首都体育馆、张家口山地新闻中心等地开展8K超高清赛事转播,还携手合作伙伴让近200台超大尺寸8K电视走进北京市150个社区、10所高校、体育比赛场馆、国家大剧院、科技部、行政副中心等场所,为全球观众及广大市民带来极具临场感的超高清赛事盛宴。

  整个赛事活动期间,在运动员村,志愿者胸前佩戴的BOE(京东方)数字胸牌采用护眼电子墨水屏,能清晰呈现黑、白、红三色显示,量身定制的智能软件及一组人工智能算法支持图文内容“海量快速刷新”,可随时、高效更新显示信息,从制卡、刷卡到拿卡仅需10秒即可完成,同时采用“无源”设计,使用手机NFC功能即可通信取电,真正实现绿色低碳理念。

  BOE(京东方)从2016年夏季赛事期间全球首次顶级赛事8K超高清实况转播,到携手中国国家击剑队亮剑东京赛场,再到2019年国庆70周年庆祝活动上3290块光影屏表演,作为领先的物联网创新企业,不断开拓数字化应用场景版图,与全球各界伙伴携手激发物联网产业的蓬勃生命力,共创智慧化新未来。(王一涵)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 证券法修订三审稿公开聚焦6大方面 两天获提千条意见

  • 狐狸厨房 | 蜂蜜水清肠还养颜?专家说:除了长胖没什么用

独家策划

推荐阅读
快三平台登录亲历:美国儿童游泳大赛
2024-01-15
快三平台骗局 韩快递员年收入40万人民币,连韩国人都看呆了
2023-12-30
快三平台APP刘诗诗顺利产子 吴奇隆微博官宣报喜
2023-12-02
快三平台手机版APP英国首相:重塑英国梦 承诺未来要保障社会公平
2024-02-18
快三平台论坛最高检以涉嫌受贿罪、利用影响力受贿罪对徐鸣决定逮捕
2024-07-19
快三平台官方网站考古探秘:5000多年前古人就会使用指纹
2023-11-28
快三平台下载app春节我们在战位:舰艇战备巡航守护万家团圆
2024-02-06
快三平台广电总局电视剧司负责人就《“十四五”中国电视剧发展规划》答记者问
2024-03-15
快三平台软件何炅过生日与汪涵一同庆祝 杨乐乐:彼此要珍惜啊
2024-06-22
快三平台官网网址马斯克:特斯拉下一代跑车续航超1000公里
2024-01-01
快三平台网投火勇厮杀裁判唱戏 库里关键1射好惊险
2024-08-20
快三平台开奖结果成都国企6亿元入股锤子被调查?官方:消息严重不实
2024-02-04
快三平台返点 4月29日国内原油期货跌4.13% 五一节前成品油价两连涨
2024-07-13
快三平台攻略依靠顽强斗争打开事业发展新天地
2024-07-27
快三平台官方明明可以靠颜值却非要靠价格实力,宝沃BX7全国15.90万起
2024-08-30
快三平台娱乐男宿管宿舍内猥亵小学女生 警方:已刑拘
2024-10-10
快三平台赔率五一小长假 赴一场艺术之约
2023-11-29
快三平台投注 055舷号大有讲究!从17吨黄金天价买入到38...
2024-08-09
快三平台技巧少年不老·冰雪之旅 | 传承
2024-04-21
快三平台充值直击-科尔打趣汤神忍痛指数高 哈登哼歌尽显轻松
2024-06-15
快三平台交流群"五一"将至,调休补休能替代加班费吗?法院这么说
2024-02-11
快三平台登录一个很有本事的人:曹操
2024-06-17
快三平台网址英国废旧核潜艇处理成难题:已拖累英军战力
2024-09-28
快三平台app 真人"黑寡妇"?俄罗斯"最美女兵"出炉:金发及腰 枪法精准
2024-06-11
加载更多
快三平台地图